Tiling Polygons with Lattice Triangles
نویسندگان
چکیده
Given a simple polygon with rational coordinates having one vertex at the origin and an adjacent vertex on the x-axis, we look at the problem of the location of the vertices for a tiling of the polygon using lattice triangles (i.e., triangles which are congruent to a triangle with the coordinates of the vertices being integer). We show that the coordinate of the vertices in any tiling are rationals with the possible denominators odd numbers dependent on the cotangents of the angles in the triangles.
منابع مشابه
Spherical F-Tilings by Triangles and r-Sided Regular Polygons, r >= 5
The study of dihedral f-tilings of the sphere S2 by spherical triangles and equiangular spherical quadrangles (which includes the case of 4-sided regular polygons) was presented in [3]. Also, in [6], the study of dihedral f-tilings of S2 whose prototiles are an equilateral triangle (a 3-sided regular polygon) and an isosceles triangle was described (we believe that the analysis considering scal...
متن کاملUnilateral and equitransitive tilings by equilateral triangles
A tiling of the plane by polygons is unilateral if each edge of the tiling is a side of at most one polygon of the tiling. A tiling is equitransitive if for any two congruent tiles in the tiling, there exists a symmetry of the tiling mapping one to the other. It is known that a unilateral and equitransitive (UE) tiling can be made with any finite number of congruence classes of squares. This ar...
متن کاملTilings by Regular Polygons Iii: Dodecagon-dense Tilings
In Tilings and Patterns, Grünbaum and Shephard claim that there are only four kuniform tilings by regular polygons (for some k) that have a dodecagon incident at every vertex. In fact, there are many others. We show that the tilings that satisfy this requirement are either the uniform 4.6.12 tiling, or else fall into one of two infinite classes of such tilings. One of these infinite classes can...
متن کاملDomino tilings of orthogonal polygons
We consider orthogonal polygons with vertices located at integer lattice points. We show that if all of the sides of a simple orthogonal polygon without holes have odd lengths, then it cannot be tiled by dominoes. We provide similar characterizations for orthogonal polygons with sides of arbitrary length. We also give some generalizations for polygons with holes and polytopes in 3 dimensions.
متن کاملH-triangles with k interior H-points
An H -triangle is a triangle with corners in the set of vertices of a tiling of R2 by regular hexagons of unit edge. It is known that any H -triangle with exactly 1 interior H -point can have at most 10 H -points on its boundary. In this note we prove that any H -triangle with exactly k interior H -points can have at most 3k+7 boundary H -points. Moreover we form two conjectures dealing with H ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Discrete & Computational Geometry
دوره 44 شماره
صفحات -
تاریخ انتشار 2010